120.
遥感图像地表分类对于城市规划、土地利用、环境监测和地表温度反演等工作而言十分重要. 针对相似地表类别存在误检的问题以及遥感图像地表类别不均衡的问题, 本文提出了一种U型Transformer模型U-BiFormer, 该模型在BiFormer的基础上使用U型解码器, 使用所有阶段解码器的输出来预测分割图, 提高了模型捕捉图像中的细节和上下文信息的能力, 使模型能更好分割相似类别. 对U型解码器特有的混合注意力模块进行改进, 增大当前阶段特征在混合特征中所占的比例, 让解码器更注重对当前阶段特征的细化, 提升模型对相似类别的分割效果. 使用CE+Focal混合损失函数替代常规交叉熵损失函数, 应对遥感图像地表类别分布不均的问题. 实验证明, 在GID大型遥感图像数据集上, 本文方法能更好地分割相似类别, 并且取得了优于当前主流模型的分割结果(
Acc (81.99% )和
mIoU (71.04%)).… …
相似文献