311.
子空间聚类方法为高维多视角数据的聚类问题提供了有效的解决方案。针对现有算法利用低秩或稀疏约束通过模型的特定性质不能使得表示矩阵直接具有块对角性的问题,提出了一致块对角和限定的多视角子空间聚类算法(CBDE-MSC)。CBDE-MSC将各个视角的子空间表示矩阵分解为一致自表示矩阵和特定自表示矩阵。对于一致自表示矩阵,使用块对角约束使其具有近似的块对角结构,探索数据的一致性;对于特定自表示矩阵,在其间施加限定性约束,探索数据的互补性。使用矩阵L
2,1范数约束误差矩阵,使其满足行稀疏。此外,使用交替方向乘子法(ADMM)优化目标函数。采用归一化互信息(NMI)、正确率(ACC)、调整兰德指数(AR)和F分数(F-score)等评价指标,对CBDE-MSC进行了评估。实验结果表明,CBDE-MSC与现有的一些优良算法相比,4个指标的结果均有较大的提升,尤其是在YaleB数据集上,相比于经典方法CSMSC,其NMI,ACC,AR和F-score分别提升了0.088,0.127,0.145和0.122。实验结果验证了所提算法的有效性。… …
相似文献