7627.
针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编码,引入依赖关系,构建依赖关系图,使深度神经网络可以充分利用句法关系.然后,通过图转换注意网络生成新的依赖弧和聚合节点信息,捕获长程依赖关系和潜在交互,加权融合注意力网络,捕捉句中关键的语义信息,抽取句子级事件论元,提升模型预测能力.最后,利用关键句检测和相似性排序,进行文档级论元填充.实验结果表明,采用基于双重注意力机制的事件抽取方法,在ACE2005数据集上,较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor,JMCEE)在精确率、召回率和
F1-score分别提高17.82%、4.61%、9.80%;在大坝安全运行日志数据集上,较最佳基线JMCEE在精确率、召回率和
F1-score上分别提高18.08%、4.41%、9.93%.… …
相似文献